Paper 2 Math AA HL:

Question 1:
$f(x)=1-x^{2}$
$g(x)=e^{2 x}$
a) Find the two intercepts of the two functions.
b) Find the area enclosed between the two functions.

ANSWER:
a) $a=-0.917, b=0$
b) 0.240 with GDC

Question 2:

X	5	6	6	8	irrelevant
Y	9	13	p	q	21

The regression line for this function is $y=2.1875 x+0.6875$.
a) Show that $(7,16)$ is the mean of this function.
b) Given that $q-p=3$, find the values for p and q.

ANSWER:

a) Literally just substitute 7 into the x for the function and show it's equal to 16 .
b) The mean of the y values is 16 , so the sum of all the y values is 80 . Since $9+13+21$ is $43, p+q$ is equal to 37 . Since $q-p=3, p=17$ and $q=20$.

Question 3:

The "loudness" of a sound is represented mathematically by the following function.
$L=10 \times \log _{10}\left(I \times 10^{12}\right)$.

Sound 1 has intensity 10^{-6} units and is 60 decibels.
Sound 2 has twice the intensity of Sound 1.
a) What is the intensity of Sound 2 ?
b) Hence, what is the loudness of Sound 2?

A thunder strike has a loudness of 115 decibels.
c) Find the intensity of the thunderstrike.

ANSWER:
a) Obviously 2×10^{-6}
b) Substitute the new value for intensity found in a) and just use the GDC, 63.01 decibels
c) $115=10 \times \log _{10}\left(I \times 10^{12}\right)$ so $\frac{10^{11.5}}{10^{12}}=I$ which means intensity is 0.316

Question 4:

The velocity of a particle is $1+e^{-t}-e^{-\sin (2 t)}, 0 \leq t \leq 2$
a) What is the velocity of the particle when $t=2$?
b) What is the maximum velocity of the particle?
c) When the particle's direction changes, what is the acceleration?

ANSWER:
a) Just substitute. -0.996 (here should be 0.203 , I think)
b) Graph the function and find the maximum value which is 1.18 when $x=0.406$
c) The velocity changes directions when $t=1.66$. Derive the velocity of the particle to get $-e^{-t}-e^{-\sin (2 t)} \times 2 \cos (2 t)$ which if you substitute 1.66 you get about 2.16

Question 5:
$X \sim B(n, 0.25)$ and $P(X \geq 1)>0.99$.
Find n .
ANSWER:
$P(X \geq 1)>0.99=P(X=0)<0.01$, so then you use the binomial distribution function formula [THIS IS NOT IN THE FORMULA BOOKLET.] $n C o \times(0.25)^{0} \times(0.75)^{n}<0.01$.
Since the first two are both equal to 1 , use nSolve to find when $(0.75)^{n}=0.01$, which gives you a value of 16.007. DO NOT assume this means it is 16 . The answer is 17 because if you substitute 16 into the equation the inequality does not hold true.

Question 6:

The volume of a sphere is increasing at $5 \mathrm{~cm}^{3}$ per second. Given that the current volume is $20 \mathrm{~cm}^{3}$, what is the rate of change for the radius?

ANSWER:
$\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}$ and $V=\frac{4}{3} \pi r^{3}$ and $\frac{d V}{d r}=4 \pi r^{2}$. When the volume is $20 \mathrm{~cm}^{3}$, the radius is about 1.68389. By substituting these values, $5 \mathrm{~cm}^{3}=4 \pi(1.684)^{2} \times \frac{d r}{d t}$ and $\frac{d r}{d t}=0.140 \mathrm{~cm}^{-1}$

Question 7:

A function $y=4 \times \ln (x-2)$ is rotated around the y-axis 360° from $0 \leq x \leq 4$.
What is the volume of revolution for the function?
ANSWER:
Convert the function in terms of $\mathrm{x} . \frac{y}{4}=\ln (x-2)$, then $e^{\frac{y}{4}}=x-2$, then $e^{\frac{y}{4}}+2=x$, then
$x^{2}=e^{\frac{y}{2}}+4$. Then, you take the numeric integral from 0 to 4 of that function. About 28.78 units.

Question 8:

I don't remember 8.

Question 9:

There is a function $\frac{x-4}{a x^{2}+b x+c}$ with y -intercept $(2,1$? $)$ and vertical asymptote at $\mathrm{x}=1$.
Find a, b and c .

ANSWER:
Couldn't solve.

SECTION B

Question 10:

A chocolatier is selling chocolate in a store. The probability density function X is given as:
$f(x)=\frac{6}{85}\left(4+3 x-x^{2}\right)$ for $0.5 \leq x \leq 3$.
$f(x)=0$ for all other values.
a) What is the mode of the function?
b) What is $P(1<x<2)$?
c) What is the median of the function?

The store sells chocolate at $\$ 25$ per kilogram, but it is running a promotion where if you buy more than 0.75 kilograms of chocolate, the rate becomes $\$ 24$ per kilogram.
d) What is the probability that someone will purchase no more than $\$ 48$ of chocolate?
e) What is the expected cost, to the nearest cent, of an average person at the store?

ANSWER:

a) Graphing the function gives the maximum (mode) at $x=1.5$.
b) By setting a numeric integral with the bounds as 1 and 2 , the probability is 0.435 .
c) Using nSolve and setting the upper bound of the function as a, the median is 1.687.
d) $\$ 48$ of chocolate is 1.5 kilograms. Do another bounded numeric integral to get 0.418.
e) Take the integral from 0.5 to 3 of the function times x to get the expected value of 1.704 kg . Since this is above 0.75 , you multiply this value by 24 in order to get about $\$ 40.90$.

Question 11:

A sprinkler sprays in a circular motion where the radius is 20 m . There is a chord $A B$ in the circle where the distance $O A$ and $O B$ are both 20 m and the distance to the midpoint of $A B$ is 14 m .
a) Show that the length of $A B$ is 28.57 to four significant figures.

The sprinkler makes one full revolution in 16 seconds.
b) Show that the angular rotation of the sprinkler is $\frac{\pi}{8}$ radians per second.

The time T is the time it takes for the sprinkler to go through all of $A B$.
c) Find T.

There is now another point D along chord $A B$ that can move. The length $A D$ is called d. The angle OAD is β and the angle AOD is α. When a certain time $t=0$, the sprinkler is collinear with the point A . When the sprinkler is collinear with point D , time $t=t$.
d) Find an expression for α in terms of t.
β is given as 0.7754 radians.
e) Using the sine rule in triangle AOD, show that $d=\frac{20 \times \sin \left(\frac{\pi t}{8}\right)}{\sin \left(2.37-\frac{\pi}{8}\right)}$.

A frog is hopping along chord $A B$, and its distance from point A is given by the function:

$$
g(t)=0.05 t^{2}+1.1 t+18
$$

f) When $t=0$, how far away is the frog from point A ?

The variable w denotes the distance from the frog to point D.
g) Create an expression for w using $d(t)$ and $g(t)$.
h) When and where will the water and the frog meet?

ANSWER:
a) Using $a^{2}+b^{2}=c^{2}$, the distance to the midpoint is 14.2828 . Multiply this by 2 .
b) The sprinkler goes 2π in 16 seconds. Divide this to get $\frac{\pi}{8}$ easily.
c) Calculate the angle between point A and the midpoint. $\cos ^{-1}\left(\frac{14}{20}\right)=0.7954$ radians. Multiply this angle by two and then divide by $\frac{\pi}{8}$ to get $T=4.051$ seconds.
d) I'm pretty sure it's just $\frac{\pi t}{8}$. Like why else would part e) use $\sin \left(\frac{\pi t}{8}\right)$
e) $\frac{d}{\sin (\alpha)}=\frac{20}{\sin (\pi-\beta-\alpha)}$ then $d=\frac{20 \times \sin \left(\frac{\pi t}{8}\right)}{\sin \left(3.1415-0.7754-\frac{\pi t}{8}\right)}$ then $d=\frac{20 \times \sin \left(\frac{\pi t}{8}\right)}{\sin \left(2.37-\frac{\pi t}{8}\right)}$
f) Obviously 18 meters.
g) w is $g(t)-d(t)$ so just substitute, giving $0.05 t^{2}+1.1 t+18-\frac{20 \times \sin \left(\frac{\pi t}{8}\right)}{\sin \left(2.37-\frac{\pi t}{8}\right)}$.
h) Graph w and the zero should be 2.29 seconds. Substitute this value to get 5.04 meters.

Question 12:
A differential equation is given as $\frac{d y}{d x}-y \operatorname{cosec}(2 x)=\sqrt{\tan (x)} \cdot y=\frac{\pi}{4}$ when $x=\frac{\pi}{4}$.
a) Using Euler's method with variable step $\frac{\pi}{12}$, find an approximation for $\frac{5 \pi}{12}$.
b) Show that $\frac{d y}{d x}\left(\frac{1}{2} \ln (\cot (x))\right)=-2 \operatorname{cosec}(2 x)$
c) I forgot the rest.

ANSWER:
a) It takes miserably long but I think it's $y=1.986$.
b) Also equally miserably long but things of note is to use the chain rule to derive the left hand side. Eventually you will need to split cosec and cot into $\frac{1}{\sin (x)}$ and $\frac{\cos (x)}{\sin (x)}$.

